ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
M. Tanaka et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 51-54
Technical Paper | Tritium Science and Technology - Tritium Processing, Transportation, and Storage | dx.doi.org/10.13182/FST05-A878
Articles are hosted by Taylor and Francis Online.
For the purpose of the recovery of a hydrogen isotope exhausted from a fusion device and its application to a tritium monitor, hydrogen extraction properties using SrZr0.9Yb0.1O3- and CaZr0.9In0.1O3- and the effect of the electrode attachment method on the hydrogen extraction were evaluated under various atmospheres and temperatures. As a result, hydrogen could be extracted from mixed gases containing hydrogen, water vapor and methane. Furthermore, water vapor electrolysis for the tritium monitor was also evaluated under a wet atmosphere containing oxygen. From these results, it was revealed that a plated platinum electrode was suitable for mixed gases containing hydrogen, water vapor and methane, and that a porous pasted platinum electrode was suitable for water vapor electrolysis. From the findings obtained from the study of the hydrogen extraction properties, we described an optimum specification of the platinum electrode for a tritium recovery system and the number of proton-conducting ceramics for a tritium monitor.