ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
R. K. Musyaev et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 35-38
Technical Paper | Tritium Science and Technology - Tritium Processing, Transportation, and Storage | doi.org/10.13182/FST05-A874
Articles are hosted by Taylor and Francis Online.
The superpermeability phenomenon was suggested to use in fusion machines to separate the fuel mixture from helium ashes, to arrange in-vessel fuel recirculation contours and effective evacuation of fuel mixture out of machine exhaust. To develop this technology and to simulate tritium recirculation in RFNC-VNIIEF at the "Prometheus" setup the experiments on superpermeation of hydrogen isotopes through metal membrane were realized.The results of experiments on superpermeation of hydrogen isotopes through cylindrical niobium membrane are presented. As the experiment has shown, membrane pumping rate is inversely proportional to square root of isotope mass and amount to 2.5 l/cm2s for protium, 1.8 l/cm2s for deuterium and 1.5 l/cm2s for tritium. The possibility of effective pumping, separation of hydrogen isotopes from helium and residual gas, compression and recuperation of hydrogen isotopes by means of superpermeable membrane was demonstrated. It follows from results that the separation of D/T from He with employment of the techniques of superpermeable membranes might reduce the total amount of tritium in fuel cycle and substantially enhance the resource of cryogenic pumps evacuating helium.