ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Teruhisa Takamatsu et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1290-1294
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A867
Articles are hosted by Taylor and Francis Online.
A magnetron discharge as a built-in ion source have studied both experimentally and numerically for a compact discharge-type fusion neutron source called IECF (Inertial Electrostatic Confinement Fusion). With this magnetron discharge, ions are produced in the vicinity of the vacuum chamber (anode) at negative electric potential. Therefore, produced ions are expected to have nearly full energy corresponding to the applied voltage to the IECF cathode but slightly smaller energy preventing them from hitting the anode of the opposite end, eventually improving both fusion reaction rate and ion recirculation life. Also, the magnetron ion source was found to produce ample ion current for maintenance of the discharge. With the optimization of the configuration of the magnetron discharge, further improvement of the fusion reaction rate is found feasible.