ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
House Dems introduce clean energy bill for net zero
Democratic leaders in the House last week introduced the Climate Leadership and Environmental Action for our Nation’s Future Act (the CLEAN Future Act, or H.R. 1512), a nearly 1,000-page piece of climate change–focused legislation establishing, among other things, a federal clean electricity standard that targets a 50 percent reduction in greenhouse gas emissions from 2005 levels by 2030 and net-zero emissions by 2050.
The bill, a draft version of which was released in January 2020, presents a sweeping set of policy proposals, both sector-specific and economy-wide, to meet those targets. The final version includes a number of significant revisions to bring the legislation into closer alignment with President Biden’s climate policy campaign pledges. For example, the bill’s clean electricity standard would require all retail electricity suppliers to provide 80 percent clean energy to consumers by 2030 and 100 percent by 2035. (A six-page fact sheet detailing the updates is available online.)
B. B. Cipiti, G. L. Kulcinski
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1245-1249
Technical Paper | Fusion Energy - Nonelectric Applications | dx.doi.org/10.13182/FST05-A858
Articles are hosted by Taylor and Francis Online.
The D-3He fusion reaction has been used to produce medical radioisotopes using the University of Wisconsin Inertial Electrostatic Confinement (IEC) Fusion Device. The high-energy 14.7 MeV proton generated from the reaction can activate materials for isotope production. The traditional IEC setup has been altered to generate medical isotopes using beam-target D-3He fusion. Beam target D-3He reactions in a thin-walled, water-cooled, stainless steel tube were used to create 13N, an isotope used in Positron Emission Tomography. At a maximum ion energy of 85 keV, 1.0 nCi of 13N was created as a proof of principle experiment. A scaled-up version of this concept may provide for a smaller, less expensive radioisotope generator for future commercial needs.