ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J. F. Santarius et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1238-1244
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A857
Articles are hosted by Taylor and Francis Online.
In Inertial Electrostatic Confinement (IEC) devices, a voltage difference between concentric, nearly transparent spherical grids accelerates ions to fusion-relevant velocities. The University of Wisconsin (UW) operates two IEC devices: a cylindrical aluminum chamber and a spherical, water-cooled, stainless-steel chamber, with a power supply capable of 75 mA and 200 kV. The research program aims to generate fusion reaction products for various applications, including protons for creating radioisotopes for nuclear medicine and neutrons for detecting clandestine materials. Most IEC devices worldwide, including the UW devices, presently operate primarily in a pressure range (1-10 mtorr) that allows ions to make only a few passes through the core before they charge exchange and lose substantial energy or they collide with cathode grid wires. It is believed that fusion rates can be raised by operating at a pressure where neutral gas does not impede ion flow, and a helicon ion source has been developed to explore operation at pressures of ~0.05 mtorr. The UW IEC research group uses proton detectors, neutron detectors, residual gas analyzers, and spectroscopic diagnostics. New diagnostic techniques have also been developed, including eclipse disks to localize proton production and chordwires to estimate ion fluxes using power balance.