ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Gregory C. Hahn, Elijah H. Martin, Mohamed A. Bourham
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1197-1201
Technical Paper | Fusion Energy - Inertial Fusion Technology | dx.doi.org/10.13182/FST05-A850
Articles are hosted by Taylor and Francis Online.
Plasma interaction with first wall and interior reactor chamber components is an influencing factor in the design of inertial fusion facilities. The concept of a liquid metal wall, in which a circulating lithium curtain would be used, has been considered in many studies. The interaction of plasmas with moving liquid metals is a complex subject due to the influence of hydrodynamics, evaporation and droplet formation, nucleation and agglomeration of condensed particulates. To gain an understanding of some of the specific details of this interaction an experimental setup of an arc-generated plasma interacting with a liquid lead pool has been designed, constructed and operated. This simulation of the plasma-liquid interaction focuses on the particle condensation of the liquid metal after plasma interaction. The experiment generates transient high-density plasma over 50 s pulse duration. Plasma characteristics are determined by various diagnostics. A set of collection substrates are arranged to collect nucleated particulates condensing from the evolving plume. Particulate size and distribution are analyzed numerically using digital images.