ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Philippe M. Bardet, Boris F. Supiot, Per F. Peterson, Ömer Savas
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1192-1196
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A849
Articles are hosted by Taylor and Francis Online.
Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.