ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Xiaoyong Luo, Mingjiu Ni, Alice Ying, M. Abdou
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1187-1191
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A848
Articles are hosted by Taylor and Francis Online.
The development of predictive capability for free surface flow with phase change is essential to evaluate liquid wall protection schemes for various fusion chambers in IFE and MFE. This paper presents a numerical methodology for free surface flow with heat and mass transfer to help resolve feasibility issues encountered in the aforementioned fusion engineering fields. The numerical methodology is conducted within the framework of the incompressible flow with the heat and mass transfer model. We present a new second-order projection method, in conjunction with Approximate-Factorization techniques (AF method) for incompressible Navier-Stokes equations. The level set method was used to capture the free surface of the flow and the deformation of the droplets accurately. This numerical investigation identifies the physics characterizing transient heat and mass transfer of the droplet and the free surface flow. The preliminary results show that the numerical methodology is successful in modeling the free surface with heat and mass transfer, though some severe deformation such as breaking and merging occurs. The versatility of the numerical methodology shows that the work can easily handle complex physical conditions in fusion science and engineering.