ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
B. R. Christensen, A. R. Raffray, M. S. Tillack
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1175-1179
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A846
Articles are hosted by Taylor and Francis Online.
In an inertial fusion energy (IFE) power plant, each fusion micro-explosion (~10 Hz) causes thermal and structural loads on the IFE reactor wall and driver optics. The loading on the wall must remain sufficiently low to ensure that economic and safety constraints are met.One proposed method for decreasing the intensity of the wall loading is to fill the reaction chamber with a gas, such as Xe, at low density. The gas will absorb much of the radiation and ion energy from the fusion event, and then slowly release it to the chamber wall. Unfortunately the protective gas introduces major heat loads on the direct drive target. The thermal loading of a target, during injection, largely determines the viability of that target upon reaching chamber center. Thus, the density of the gas must be carefully selected to ensure that a target will survive injection.The objective of this work is to quantify and characterize the heat flux resulting from the interaction of the target and the protective gas. The loading of the target is modeled using DS2V, a commercial DSMC (Direct Simulation Monte Carlo) program. Using DS2V, this work explores the effect of the protective gas density, temperature, sticking (condensation) and accommodation coefficients on the heat flux to the target.