ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
P. Meekunnasombat, J. G. Oakley, M. H. Anderson, R. Bonazza
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1170-1174
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A845
Articles are hosted by Taylor and Francis Online.
A large, vertical shock tube is used to explore the breakup and mitigation effects of liquid layers expected from the hydrodynamic shock generated in an inertial fusion reaction. Single and multiple layers of water are tested at two Mach numbers, 2.12 and 3.20. X-ray radiography techniques are used to image the breakup of the water layer resulting in a quantitative measure of the mass fraction distribution of water after shock impact. The amount of breakup is increased with the addition of multiple layers and the increased breakup decreases the end wall impulse. The speed of the transmitted shock wave can be reduced by 50% and is a weak function of the number of layers. The peak pressure at the end-wall of the shock tube is significantly increased due to the high impulsive force of the single liquid layer, however this pressure is substantially reduced when multiple layers containing the same mass of water are used.