ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
D. T. Goodin et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1131-1138
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A838
Articles are hosted by Taylor and Francis Online.
A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The technology to economically manufacture and then position cryogenic targets at chamber center is at the heart of future IFE power plants. For direct drive IFE (laser fusion), energy is applied directly to the surface of a spherical CH polymer capsule containing the deuterium-tritium (DT) fusion fuel at approximately 18K. For indirect drive (heavy ion fusion, HIF), the target consists of a similar fuel capsule within a cylindrical metal container or ''hohlraum'' which converts the incident driver energy into x-rays to implode the capsule. For either target, it must be accurately delivered to the target chamber center at a rate of about 5-10Hz, with a precisely predicted target location. Future successful fabrication and injection systems must operate at the low cost required for energy production (about $0.25/target, about 104 less than current costs).Z-pinch driven IFE (ZFE) utilizes high current pulses to compress plasma to produce x-rays that indirectly heat a fusion capsule. ZFE target technologies utilize a repetition rate of about 0.1 Hz with a higher yield.This paper provides an overview of the proposed target methodologies for laser fusion, HIF, and ZFE, and summarizes advances in the unique materials science and technology development programs.