ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
D. T. Goodin et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1131-1138
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A838
Articles are hosted by Taylor and Francis Online.
A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The technology to economically manufacture and then position cryogenic targets at chamber center is at the heart of future IFE power plants. For direct drive IFE (laser fusion), energy is applied directly to the surface of a spherical CH polymer capsule containing the deuterium-tritium (DT) fusion fuel at approximately 18K. For indirect drive (heavy ion fusion, HIF), the target consists of a similar fuel capsule within a cylindrical metal container or ''hohlraum'' which converts the incident driver energy into x-rays to implode the capsule. For either target, it must be accurately delivered to the target chamber center at a rate of about 5-10Hz, with a precisely predicted target location. Future successful fabrication and injection systems must operate at the low cost required for energy production (about $0.25/target, about 104 less than current costs).Z-pinch driven IFE (ZFE) utilizes high current pulses to compress plasma to produce x-rays that indirectly heat a fusion capsule. ZFE target technologies utilize a repetition rate of about 0.1 Hz with a higher yield.This paper provides an overview of the proposed target methodologies for laser fusion, HIF, and ZFE, and summarizes advances in the unique materials science and technology development programs.