ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Takashi Mutoh, Ryuhei Kumazawa, Tetsuo Seki, Fujio Simpo, Goro Nomura, Tsuyoshi Ido, Tetsuo Watari, Jean-Marie Noterdaeme, Yanping Zhao
Fusion Science and Technology | Volume 35 | Number 3 | May 1999 | Pages 297-308
Technical Paper | doi.org/10.13182/FST35-297
Articles are hosted by Taylor and Francis Online.
Steady-state ion cyclotron range of frequency (ICRF) heating technologies have been developed to heat plasma for >30 min in the Large Helical Device (LHD). Steady-state-operation tests of high voltages up to 40 kV0p for >30 min were carried out on radio-frequency (rf) vacuum feedthroughs and a coaxial transmission line in a test set. Four types of ceramic feedthroughs, each having a 240-mm diameter, were tested. Cone-type alumina ceramic and cylinder-type silicon nitride composite-ceramic feedthroughs produced good performances of 40 kV/30 min and 50 kV/10 s. The others had vacuum leaks when subjected to long-pulse duration. The temperature of the cone-type alumina ceramic feedthrough was measured during the ICRF operations. By using gas-cooling techniques, the temperature increase of the ceramic was substantially reduced and saturated within 20 min. Without any gas-cooling techniques, the temperature increased linearly and did not saturate. Therefore, this approach could not be used for steady-state operation. The rf dissipation on the ceramic was calculated using the ANSYS finite element computer code. It was found that damaged feedthroughs had local high heat spots, which could result in vacuum leaks. A 240-mm-diam water-cooled coaxial transmission line was designed and tested for steady-state operation. Specially designed connector components and Teflon insulator disks were tested. During the test operation, the insulation gases of nitrogen, sulfur hexafluoride, and carbon dioxide were used to compare their insulation capabilities for steady state. For the duration of a 10-s pulse, these gases performed well up to 60 kV0p. However, for steady-state operation, carbon dioxide gas could not withstand voltages >40 kV0p. The connector components of the transmission line performed without problems below 50 kV0p and 1 kA0p for 30-min steady-state operation. The performance of the feedthroughs and transmission line exceeded the specifications for steady-state heating in the LHD.