ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Jean Boscary, Masanori Araki, Satoshi Suzuki, Koichiro Ezato, Masato Akiba
Fusion Science and Technology | Volume 35 | Number 3 | May 1999 | Pages 289-296
Technical Paper | doi.org/10.13182/FST99-A82
Articles are hosted by Taylor and Francis Online.
The purpose of the International Thermonuclear Experimental Reactor (ITER) divertor, which is located at the bottom of the vacuum vessel, is to exhaust impurities and their power from the plasma. Divertor plates function to withstand and to remove a steady-state surface heat flux of 5 MW/m2 and a transient peak heat flux up to 20 MW/m2 for 10 s on the side that faces the plasma. These demanding heat loads require active cooling by a pressurized subcooled flow of water as well as the development of a high-performance cooling channel to avoid burnout. Previous experiments showed that a screw tube, which is a tube whose inner surface is machined like a nut, is an efficient means of removing high heat fluxes. New experiments have been carried out with a B 0205 M10 type of screw copper tube. The average inner diameter, i.e., at the midheight of the fin, is 10 mm, and the outer diameter is 14 mm. Different pitches have been investigated: 1.5, 1.25, 1, and 0.75 mm. Incident critical heat fluxes (ICHFs) between 25 and 47 MW/m2 have been reached for local pressures ranging from 0.9 to 2.2 MPa, inlet temperatures from 17 to 33°C, and axial velocities from 3.6 to 14 m/s. ICHF increases as axial velocity increases and depends slightly on local pressure. Experimental results confirm the potentialities of the screw tube as a reliable geometry for fusion cooling tubes.