ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
L. C. Cadwallader
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 995-1002
Technical Paper | Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST05-A818
Articles are hosted by Taylor and Francis Online.
The Worker Exposure Failure Modes and Effects Analysis (WE-FMEA) is a new approach to quantitatively evaluate worker risks from possible failures of co-located equipment in the complex environment of a magnetic or inertial fusion experiment. For next-step experiments such as the International Thermonuclear Experimental Reactor (ITER) or the National Ignition Facility (NIF), the systems and equipment will be larger, handle more throughput or power, and will, in general, be more robust than past experiments. These systems and equipment are necessary to operate the machine, but the rooms are congested with equipment, piping, and cables, which poses a new level of hazard for workers who will perform hands-on maintenance. The WE-FMEA systematically analyzes the nearby equipment and the work environment for equipment failure or inherent hazards, and then develops exposure scenarios. Once identified, the exposure scenarios are evaluated for the worker hazards and quantitative worker risk is calculated. Then risk scenarios are quantitatively compared to existing statistical data on worker injuries; high-risk scenarios can be identified and addressed in more detail to determine the proper means to reduce, mitigate, or protect against the hazard. The WE-FMEA approach is described and a cooling system maintenance example is given.