ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. R. Williamson, Jr., J. P. Blanchard
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 936-940
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A809
Articles are hosted by Taylor and Francis Online.
The Z-Accelerator is an intense x-ray source located at Sandia National Laboratory. On a typical shot, 20 MA of current passes through a cylindrical array of wires over tens of nanoseconds. The result is the release of 2 MJ of low-energy x-rays at approximately 200 TW. The wires are mostly vaporized in this time, but some wire fragments remain. We have developed a model for the deformation of these wires as they accelerate towards the center of the device. While the shot is generally over 200 nanoseconds, the model only covers times on the order of 1-4 nanoseconds, as it is a continuum model.The model begins with a 2-D finite element model that determines the forces and magnetic fields the titanium wires experience early in a typical shot. The magnetic field around the wires reaches a maximum of 210 Tesla when the current is a maximum. ANSYS provides a force per unit length that is applied to the wire over time.The forces that are determined in ANSYS are used in a separate computer code that solves the equations of motion for the wires. The code solves the 1-D wave equation with a periodic forcing function, using only the early portions of a cycle to approximate a monotonically increasing load. As the wire is displaced from its initial position, the tension should increase as the length of the wire increases. An incremental model is used to update the tension as the wire is displaced, effectively linearizing an inherently nonlinear problem. Results will be described that show the wires' behavior as a function of the initial tension applied to the wire.