ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. D. Freudenberg, D. E. Williamson, H. M. Fan, L. Myatt
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 911-915
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A804
Articles are hosted by Taylor and Francis Online.
A non linear FEA study has been performed on the modular coils of the National Compact Stellarator Experiment (NCSX). The modular coils provide the primary magnetic field within NCSX and consist of flexible cable conductor wound on a cast and machined winding form and vacuum impregnated with epoxy. Eighteen coils and associated winding forms are connected at assembly into a toroidal shell structure. The purpose of this study was to evaluate the structural response of the windings and shell structure during cooldown and normal operation. Two separate software packages were used for the study, and two independent analyses were undertaken. The first analysis performed with Pro/Mechanica®, examined both the response of the modular coils to magnetic pressure and thermal effects during a 2 Tesla pulse. Modeled items included a portion of the shell structure the winding packs, and a set of 48 ''pseudo clamps''. The so called ''pseudo clamps'' are represented simply by blocks of material that are restrained in their respective normal directions and have properties which mimic the stiffness of the spring washers of the actual preload clamps. The winding pack is free to slide on the shell structure and is restrained only by the clamps. A second model, including the complete shell structure of all three coils, was studied with the FEA program ANSYS®. Contact regions defined in both Pro/Mechanica and Ansys allow the winding to slide and detach form the shell structure. The two analyses are compared for parameters such as winding/structure gap, overall displacement, equivalent stress and principle strain values.