ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Peter H. Titus, Michael Kalish
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 906-910
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A803
Articles are hosted by Taylor and Francis Online.
DOE requirements as outlined in DOE-STD-1020-2002 are followed for determination of the necessity for seismic qualification of the stellarator and its related systems. IBC-2000 is followed for the qualification requirements The NCSX criteria document provides guidance on load combinations. The stellarator presents minimal occupational hazards and hazards to the public. The qualification effort is intended to preserve the viability of continuing the experiment after an earthquake, and to explore the sensitivity of the design to dynamic loading from sources other than normal operation. A response spectra modal analysis has been employed. The seismic model builds on available conceptual design and design models of the vessel, and modular coil. Outer TF and PF coil models and models of the cold mass supports have been generated and added to form a complete model of the stellarator system. Much of the stellarator is robust to resist normal Lorentz forces. Areas sensitive to lateral loads and dynamic application of non-Lorentz loading, include the nested cylinder cold mass support columns, cantilevered vessel ducts, and the radial guides connecting the vessel ducts and modular coil shell. Loads on these structures are quantified, and design adequacy is assessed.