ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
N. Hashimoto et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 881-885
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A798
Articles are hosted by Taylor and Francis Online.
To understand the helium retention characteristics and helium bubble distribution in tungsten, 3He(d,p)4He nuclear reaction analysis (NRA) and transmission electron microscopy (TEM) have been performed for two forms of tungsten: single crystal and polycrystalline, implanted up to 1 × 1019 3He/m2 at 850°C and annealed at 2000°C. The NRA results indicated that as-implanted single crystal and polycrystalline tungsten exhibited similar helium retention characteristics. In addition, a flash anneal at 2000°C had no effect on the retention of helium. However, when 1019 He/m2 was implanted into single crystal tungsten in 1000 cycles of 1016 He/m2 each followed by a 2000°C flash anneal, the observed helium yield dropped by 95% compared to 70% for polycrystalline tungsten. The microstructure of single crystal tungsten implanted with 1 × 1019 He/m2 and annealed at 2000°C in a single step showed numerous tiny cavities at a depth of ~1.6 m, while no visible cavities were observed in the 1000 step annealed single crystal. However, in the case of polycrystalline tungsten, a single step annealing led to significant cavity growth at grain boundaries. The reduced He retention suggests a preference for inertial fusion energy armor of single crystal over polycrystalline tungsten.