ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Takuya Nagasaka et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 876-880
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A797
Articles are hosted by Taylor and Francis Online.
Tungsten (W) coating on fusion candidate V-4Cr-4Ti (NIFS-HEAT-2) substrate was demonstrated with plasma spray process for the purpose of applying to protection of the plasma facing surface of a fusion blanket. Increase in plasma input power and temperature of the substrate was effective to reduce porosity of the coating, but resulted in hardening of the substrate and degradation of impact property at 77 K. The hardening seemed to be due to contamination with gaseous impurities and deformation by thermal stress during the coating process. Since all the samples showed good ductility at room temperature, further heating seems to be acceptable for the vanadium substrate. The fracture stress of the W coating was estimated from bending tests as at least 313 MPa, which well exceeds the design stress for the vanadium structure in fusion blanket.