ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Hiroyuki Ogiwara, Akira Kohyama, Tatsuya Hinoki
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 866-870
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A795
Articles are hosted by Taylor and Francis Online.
Reduced activation ferritic/martensitic steels (RAFs) are leading candidates for blanket and first wall of fusion reactors where effects of displacement damage and helium production are important subjects to be investigated. To obtain systematic and accurate information of microstructural response under fusion environment, dual-ion irradiation method was applied. In order to estimate the microstructural response under fusion neutron irradiation environment, ion-beam irradiation was carried out with helium and metallic self ions. The study is focused on JLF-1 single- and dial-ion irradiated up to 60 dpa at 693, 743 and 793 K. The damage rate and helium injection rate were 1.0 × 10-3 dpa/sec and 15 × 10-3 appm He/sec. At 743 K, void cavity structure was observed under dual-ion irradiation where the contribution of void structure on hardening was not so significant. Irradiation hardening and swelling were depended for the case of dual-ion irradiation. It is attempted to quantitatively relate the dislocation and cavities to the irradiation induced hardening.