ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Marie-Françoise Maday
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 861-865
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A794
Articles are hosted by Taylor and Francis Online.
Hydrogen embrittlement behaviour of the reduced activation ferritic/martensitic steels, Eurofer'97 and VS3104, has been compared to that of the conventional alloy T91, by means of constant extension rate tests run under dynamic electrochemical charging. Charged versus uncharged reduction of specimen area ratios at rupture were taken as the most suitable ductility indexes for material discrimination in terms of hydrogen damage resistance. Fractographic analysis indicated that hydrogen content as low as 1.6 wppm caused rupture of al investigated steels, but to different degree, by promoting grain boundary decohesion. Higher hydrogen levels stimulated failure by the combined effect of bond strength weakening and stress intensification from dislocation blocking at interfaces. The better performances of T91 as well as the variability of Eurofer tensile responses were ascribed to the different chemistry and density of key microstructural factors, already suspected from metallurgical examination and further supported by hydrogen thermal extraction results.