ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. Diegele, R. Andreani, R. Lässer, B. van der Schaaf
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 829-835
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A789
Articles are hosted by Taylor and Francis Online.
The paper reviews the objectives and the status of the current EU long-term materials program. It highlights recent results, discusses some of the key issues and major existing problems to be resolved and presents an outlook on the R&D planned for the next few years. The main objectives of the Materials Development program are the development and qualification of reduced activation structural materials for the Test Blanket Modules (TBMs) in ITER and of low activation structural materials resistant to high fluence neutron irradiation for in-vessel components such as breeding blanket, divertor and first wall in DEMO. The EU strategy assumes: (i) ITER operation starting in 2015 with DEMO relevant Test Blanket Modules to be installed from day one of operation, (ii) IFMIF operation in 2017 and (iii) DEMO final design activities in 2022 to 2025. The EU candidate structural material EUROFER for TBMs has to be fully code qualified for licensing well before 2015. In parallel, research on materials for operation at higher temperatures is conducted following a logical sequence, by supplementing EUROFER with the oxide dispersion strengthened ferritic steels and, thereafter, with fibre-reinforced Silicon Carbide (SiCf/SiC). Complementary, tungsten alloys are developed as structural material for high temperature applications such as gas-cooled divertors.