ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
J. T. Scoville, M. L. Walker
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 774-778
Technical Paper | Fusion Energy - Plasma Engineering, Heating, Current Drive, and Control | doi.org/10.13182/FST05-A780
Articles are hosted by Taylor and Francis Online.
Modern tokamaks are highly sophisticated devices consisting of a large number of state-of-the-art systems that must function in unison to obtain a successful plasma discharge. An unsuccessful discharge can result if one or more systems fail, and diagnosis in an efficient and timely manner can be difficult. The resulting reduction in tokamak availability and productivity can be expensive, justifying a significant effort for automated fault diagnosis.For the DIII-D tokamak, a software system has been used for the past 5 years to automatically monitor and test the performance of hundreds of tokamak systems. The Fault Identification and Communication System (FICS) is automatically triggered to run immediately after each tokamak discharge and report its results via a simple color-coded graphical user interface. In addition to saving the operator time, the significant advantage of FICS is its ability to detect insipient faults that could lead to future machine failures. It has been estimated that FICS has saved an average of one to two shots per day, which equates to approximately 5% of all DIII-D pulses. The significant experience gained through the development and use of this post-discharge analysis tool also provides insight into future methods for on-line process monitoring of steady state devices