ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Hisae Togashi, Kazuhisa Yuki, Hidetoshi Hashizume
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 740-745
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A774
Articles are hosted by Taylor and Francis Online.
In a fusion reactor, almost 30% of fusion energy is deposited on plasma facing components. In the divertor region, it is, however, difficult to utilize this energy with conventional cooling techniques based on high velocity flow with highly subcooled cooling. From this viewpoint, the authors have been developing a cooling technique with metal porous media. In this study, in order to attain both the higher cooling performance and the acquisition of high density energy, high heat removal experiments are performed by using homogeneous and functionally graded porous media to estimate their fundamental heat transfer performances. From the experiments with the homogeneous porous media, it is clarified that the cooling performance is not always improved by using finer pore size media. The functionally graded porous media can reduce a pressure loss. Additionally, in case of the functionally graded porous media with the finer pore, the heat transfer coefficient is higher than that obtained in the homogeneous case. As for the optimal design, it is important to consider the degree of vapor development near a heated surface in the porous media and an effective discharge of vapor from the heated region.