ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Adrian Serban, Sing Lee
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 54-61
Technical Paper | doi.org/10.13182/FST99-A77
Articles are hosted by Taylor and Francis Online.
To study the effect of higher axial sheath velocities on neutron production, the geometry of the inner electrode (anode) of a 3-kJ Mather-type plasma focus device was modified. Double-stage stepped-anode configurations were tested with a speed-enhanced region long enough for a significant increase in speed but not long enough to allow the development of force-field flow-field separation at the end of the axial phase. Peak axial speeds up to 15 cm/s were achieved without modifying the deuterium filling pressure and charging voltage. The neutron and soft X-ray productions were found to be dependent on sheath velocity. A new scaling law for the nonbeam component of the neutron yield was proposed.