The US Advanced Limiter-divertor Plasma-facing Systems (ALPS) program is developing the science of liquid metal surface divertors for near and long term tokamaks. These systems may help solve the demanding heat removal, particle removal, and erosion issues of fusion plasma/surface interactions. ALPS combines tokamak experiments, lab experiments, and modeling. We are designing both static and flowing liquid lithium divertors for the National Spherical Torus Experiment (NSTX) at Princeton. We are also studying tin, gallium, and tin-lithium systems. Results to date are extensive and generally encouraging, e.g., showing: 1) good tokamak performance with a liquid Li limiter, 2) high D pumping in Li and non-zero He/Li pumping, 3) well-characterized temperature-dependent liquid metal surface composition and sputter yield data, 4) predicted stable low-recycle improved-plasma NSTX-Li performance, 5) high temperature capability Sn or Ga potential with reduced ELM & disruption response concerns. In the MHD area, analysis predicts good NSTX static Li performance, with dynamic systems being evaluated.