ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
J. N. Brooks et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 669-677
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A763
Articles are hosted by Taylor and Francis Online.
The US Advanced Limiter-divertor Plasma-facing Systems (ALPS) program is developing the science of liquid metal surface divertors for near and long term tokamaks. These systems may help solve the demanding heat removal, particle removal, and erosion issues of fusion plasma/surface interactions. ALPS combines tokamak experiments, lab experiments, and modeling. We are designing both static and flowing liquid lithium divertors for the National Spherical Torus Experiment (NSTX) at Princeton. We are also studying tin, gallium, and tin-lithium systems. Results to date are extensive and generally encouraging, e.g., showing: 1) good tokamak performance with a liquid Li limiter, 2) high D pumping in Li and non-zero He/Li pumping, 3) well-characterized temperature-dependent liquid metal surface composition and sputter yield data, 4) predicted stable low-recycle improved-plasma NSTX-Li performance, 5) high temperature capability Sn or Ga potential with reduced ELM & disruption response concerns. In the MHD area, analysis predicts good NSTX static Li performance, with dynamic systems being evaluated.