ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Kimberly A. DeFriend Obrey, Robert D. Day, Doug Hatch, Brent F. Espinoza, Shihai Feng, Brian M. Patterson
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 490-498
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-4-490
Articles are hosted by Taylor and Francis Online.
Aerogel is a material used in numerous components for inertial confinement fusion and high-energy density physics targets. In the past, these components were molded into the proper shapes. Artifacts left in the parts from the molding process, contour irregularities from shrinkage, and density gradients caused by the skin have caused Los Alamos National Laboratory to pursue machining as a way to make the components. The machining of aerogel is an involved process, and many manufacturing aspects need to be considered including holding the material for machining, achieving the desired surface roughness and the desired dimensional accuracy, conceivably producing a part with enhanced dimensional tolerance and minimal density variations. Therefore, an effort has been established to develop a method to more accurately determine density errors, perform machining experiments, acquire physical property data, and model the machining process.