ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
R. R. Paguio, A. Nikroo, K. M. Saito, J. F. Hund, E. R. Castillo, N. M. Ravelo, K. Quan
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 450-455
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7425
Articles are hosted by Taylor and Francis Online.
Resorcinol formaldehyde (RF) foam shells are needed for direct-drive inertial confinement laser fusion experiments at the University of Rochester OMEGA laser facility. As previously reported, the addition of long-chained polymers to the fabrication process has improved shell wall uniformity, but this change has led to a lower yield (from ~40 to ~15%) of shells that are gas retentive after the application of glow discharge polymer (GDP) using the standard deposition technique. We have improved this yield by modifying the coating conditions of the GDP overcoating process by modifying the background coating pressure from the constant 75 mTorr to using a two-step coating process of a high-pressure coating at 250 mTorr followed by low-pressure coating of 75 mTorr. This modification has improved the yield of the gas retention on the styrene-butadiene-styrene RF shells from ~15 to ~60%. We have found that the surface roughness of these shells is also improved from ~45 nm root-mean-square (rms) to ~20 nm rms. This technique, however, leads to a slight shrinkage of shells, which will be described.