ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
R. R. Paguio, A. Nikroo, K. M. Saito, J. F. Hund, E. R. Castillo, N. M. Ravelo, K. Quan
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 450-455
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7425
Articles are hosted by Taylor and Francis Online.
Resorcinol formaldehyde (RF) foam shells are needed for direct-drive inertial confinement laser fusion experiments at the University of Rochester OMEGA laser facility. As previously reported, the addition of long-chained polymers to the fabrication process has improved shell wall uniformity, but this change has led to a lower yield (from ~40 to ~15%) of shells that are gas retentive after the application of glow discharge polymer (GDP) using the standard deposition technique. We have improved this yield by modifying the coating conditions of the GDP overcoating process by modifying the background coating pressure from the constant 75 mTorr to using a two-step coating process of a high-pressure coating at 250 mTorr followed by low-pressure coating of 75 mTorr. This modification has improved the yield of the gas retention on the styrene-butadiene-styrene RF shells from ~15 to ~60%. We have found that the surface roughness of these shells is also improved from ~45 nm root-mean-square (rms) to ~20 nm rms. This technique, however, leads to a slight shrinkage of shells, which will be described.