ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
J. T. Bousquet, J. F. Hund, D. T. Goodin, N. B. Alexander
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 446-449
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-446
Articles are hosted by Taylor and Francis Online.
The horizontal rotary glow discharge polymer (GDP) coater is being developed to help increase the production rate of inertial confinement fusion targets and to meet the very high production rates needed for inertial fusion energy targets. The coater is used to put a conformal GDP gas retention coating on top of foam shell targets. A number of alterations to the design and operation of the horizontal rotary GDP coater are discussed. Compared to previous iterations of the horizontal coater, the changes have resulted in improving the yield of gas retentive targets with thinner coatings and increasing the coating rate, smoothness, and uniformity. The number of targets that can be coated at once has increased from tens to hundreds, or even thousands. The alterations include changing the coating tube configuration; adjusting the coating pressures; and altering the radio-frequency power, gas flow rates, and tube rotation rates. Methods to further improve the coater are also discussed.