ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
K. C. Chen, A. Q. Nguyen, H. Huang, S. A. Eddinger, A. Nikroo
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 429-437
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7422
Articles are hosted by Taylor and Francis Online.
A germanium-doped CH capsule is one of the capsule designs for the National Ignition Facility. Eight batches were made to evaluate yields and reproducibility for production. When larger batches (more than 20 capsules) were made, numerous nanometer-height domes, together with many nanometer-sized seeds and micrometer-sized beads, were observed on the capsule surface. These domes originate from abrasion-induced nanometer-sized seeds. Large batch sizes tend to slide as cohesive groups that enhance friction and abrasion. Limiting the batch size to 15 capsules prevented formation of nanometer-height domes. Roughly 80% of the capsules from 15 capsule batches meets the surface roughness specification, and 85% meets the isolated defect specification. The wall thickness and outer diameter yields, currently at 58% and 28 to 40%, respectively, are affected by variables that will be discussed. The average concentrations of the two Ge-doped layers are 0.77 and 0.50 at.%, with standard deviations of 0.15 at.%. The overall Ge-doping yield, with both layers within the most recent tolerance specification of ±0.2 at.%, is 20%. The best overall yields of 15 shell batches are currently 40 to 55%. The yield-limiting factors are wall-thickness accuracy and high mid-mode in outer surface power spectra.