ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
E. L. Alfonso, K. A. Moreno, H. L. Wilkens, J. S. Jaquez, A. Nikroo
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 424-428
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7421
Articles are hosted by Taylor and Francis Online.
A thin gold layer is deposited as a liner on the interior of a uranium hohlraum to protect from oxidation of uranium. X-ray fluorescence (XRF) spectrometry was chosen as the liner thickness measurement method for its accuracy, speed, and ease of measurement. The process is noncontact and nondestructive. The thicknesses were determined using a micro-XRF spectrometer unit with analysis software. The accuracy of the measurements was verified against qualified standards. The method was used to accurately measure gold liner thicknesses of cylindrical hohlraums, and it gave initial promising results for measuring the thickness of a boron-doped gold layer when corrected for the gold atom fraction.