ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. A. Eddinger, H. Huang, M. E. Schoff
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 411-416
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-411
Articles are hosted by Taylor and Francis Online.
The inertial confinement fusion program requires the uniformity of multilayered samples to be measured to high accuracy. We currently use a reflection spectroscopy tool to measure optically transparent shells with no more than two layers. The method cannot measure opaque samples such as beryllium shells, low-reflection samples such as foam shells, or any shells with more than two layers such as National Ignition Facility specification Ge-CH shells. We also use a white-light interferometer to measure transparent samples with multiple layers, but only at the North/South Poles for a given orientation. To complement these existing tools, we developed an X-ray technique based on a commercial X-ray microscope (Xradia MicroXCT). MicroXCT is capable of providing high-contrast, high-resolution images and allows the samples to be precision aligned and angular indexed. Dimension accuracy is achieved through the calibration of the projection magnification and the lens distortion. From each X-ray image, a wall thickness trace along the great circle is obtained by converting Cartesian coordinates into cylindrical coordinates, and edge-finding algorithms are developed for a contact radiography project. Three-dimensional reconstruction and wall thickness display allow the visualization of the sample nonuniformity. The method has a 0.3 m measurement precision and, through phase contrast calibration, can achieve 0.3 m accuracy.