ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
H. Huang, S. A. Eddinger, M. Schoff
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 373-379
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-373
Articles are hosted by Taylor and Francis Online.
National Ignition Facility (NIF) specifications have stringent dimensional accuracy requirements on target components. For example, the laser-hole diameter on an ablator capsule must be characterized to ±0.5 m to ensure proper fill tube insertion and to minimize the glue joint mass to <2.5 ng. A charge-coupled-device-based X-ray radiography and tomography instrument (commercially obtained from Xradia, Inc.) is used in target metrology where sample opacity precludes the use of optical techniques; however, the built-in caliper for dimensional measurement cannot provide the required accuracy. The instrument has three main error sources: (a) point projection magnification, (b) imaging lens distortion, and (c) phase contrast shift. The sample feature size dictates the calibration strategy. For large features such as the shell diameter, (a) and (b) dominate the error budget. The built-in caliper is accurate to ~2 to 3%, corresponding to a ±50-m error for a 2000-m NIF capsule. In this work, we developed an X-ray transmission dimension standard and developed (by measuring the standard) a software algorithm to "un-distort" the acquired images without resorting to the standard each time. The latter approach reduces the processing time by 50% and still offers a tenfold accuracy improvement and makes the Xradia instrument useful in screening components. For small features such as laser-drilled holes, (c) is dominant. It shifts the apparent wall boundary to cause a typical ~2-m error for the 5- to 10-m hole diameter. We developed an empirical correction technique with 0.5-m accuracy, in which the dimensions measured by radiography were benchmarked against those by a focused ion beam and scanning electron microscope after sample cleavage. The improved accuracy allows the glue mass to be estimated to 1 ng as required by the NIF specifications.