ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
H. Huang, S. A. Eddinger, M. Schoff
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 373-379
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-373
Articles are hosted by Taylor and Francis Online.
National Ignition Facility (NIF) specifications have stringent dimensional accuracy requirements on target components. For example, the laser-hole diameter on an ablator capsule must be characterized to ±0.5 m to ensure proper fill tube insertion and to minimize the glue joint mass to <2.5 ng. A charge-coupled-device-based X-ray radiography and tomography instrument (commercially obtained from Xradia, Inc.) is used in target metrology where sample opacity precludes the use of optical techniques; however, the built-in caliper for dimensional measurement cannot provide the required accuracy. The instrument has three main error sources: (a) point projection magnification, (b) imaging lens distortion, and (c) phase contrast shift. The sample feature size dictates the calibration strategy. For large features such as the shell diameter, (a) and (b) dominate the error budget. The built-in caliper is accurate to ~2 to 3%, corresponding to a ±50-m error for a 2000-m NIF capsule. In this work, we developed an X-ray transmission dimension standard and developed (by measuring the standard) a software algorithm to "un-distort" the acquired images without resorting to the standard each time. The latter approach reduces the processing time by 50% and still offers a tenfold accuracy improvement and makes the Xradia instrument useful in screening components. For small features such as laser-drilled holes, (c) is dominant. It shifts the apparent wall boundary to cause a typical ~2-m error for the 5- to 10-m hole diameter. We developed an empirical correction technique with 0.5-m accuracy, in which the dimensions measured by radiography were benchmarked against those by a focused ion beam and scanning electron microscope after sample cleavage. The improved accuracy allows the glue mass to be estimated to 1 ng as required by the NIF specifications.