ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
House Dems introduce clean energy bill for net zero
Democratic leaders in the House last week introduced the Climate Leadership and Environmental Action for our Nation’s Future Act (the CLEAN Future Act, or H.R. 1512), a nearly 1,000-page piece of climate change–focused legislation establishing, among other things, a federal clean electricity standard that targets a 50 percent reduction in greenhouse gas emissions from 2005 levels by 2030 and net-zero emissions by 2050.
The bill, a draft version of which was released in January 2020, presents a sweeping set of policy proposals, both sector-specific and economy-wide, to meet those targets. The final version includes a number of significant revisions to bring the legislation into closer alignment with President Biden’s climate policy campaign pledges. For example, the bill’s clean electricity standard would require all retail electricity suppliers to provide 80 percent clean energy to consumers by 2030 and 100 percent by 2035. (A six-page fact sheet detailing the updates is available online.)
M. Abdou et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 475-487
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | dx.doi.org/10.13182/FST05-A732
Articles are hosted by Taylor and Francis Online.
Testing blanket concepts in the integrated fusion environment is one of the principal objectives of ITER. Blanket test modules will be inserted in ITER from Day 1 of its operation and will provide the first experimental data on the feasibility of the D-T cycle for fusion. With the US rejoining ITER, the US community has decided to have strong participation in the ITER Test Blanket Module (TBM) Program. A US strategy for ITER-TBM has evolved that emphasizes international collaboration. A study was initiated to select the two blanket options for the US ITER-TBM in light of new R&D results from the US and world programs over the past decade. The study is led by the Plasma Chamber community in partnership with the Materials, PFC, Safety, and physics communities. The study focuses on assessment of the critical feasibility issues for candidate blanket concepts and it is strongly coupled to R&D of modeling and experiments. Examples of issues are MHD insulators, SiC insert viability and compatibility with PbLi, tritium permeation, MHD effects on heat transfer, solid breeder "temperature window" and thermomechanics, and chemistry control of molten salts. A dual coolant liquid breeder and a helium-cooled solid breeder blanket concept have been selected for the US ITER-TBM.