ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul P. H. Wilson, Todd R. Allen, Laila A. El-Guebaly
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 445-449
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A727
Articles are hosted by Taylor and Francis Online.
For the first time since the early 1990's, the U.S. Department of Energy has long term research and development programs in both nuclear fission and nuclear fusion, the Generation IV program and the ARIES program, respectively. The Generation IV program has introduced a safety goal for future fission reactor systems that has long been reflected in the ARIES mission: no off-site emergency response to any design basis accident. This change, in concert with the overall departure from light water reactor technology, will drive a change in the regulatory framework for both Generation IV reactors and fusion power plants of the future. Further, both fission and fusion power plants will have to compete in similar future energy markets with uncertainties in energy prices and the development of alternative energy products. Enabling the success of nuclear energy, advanced materials will be a cornerstone to both programs, driven both by higher temperatures and heat fluxes and by a desire for longer lifetimes in high radiation environments. The synergies created by these increasingly parallel programs open the door for renewed collaborations that will increase the total effectiveness of research needed in both.