ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
J. F. Lyon et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 414-421
Technical Paper | Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST05-A723
Articles are hosted by Taylor and Francis Online.
Four quasi-axisymmetric compact stellarator plasma and coil configurations are analyzed for their potential as reactors. A 0-D (volume-average) approach for optimizing the main reactor parameters allows study of the relationship between global parameters and the compatibility of different constraints for a given power output including plasma-coil spacing, coil-coil spacing, maximum field and coil current density, neutron wall loading, plasma beta value, etc. The result is reactor candidates with average major radii <R> in the 6-7 m range, a factor of two smaller than those of previous studies. A 1-D power balance code is used to study the ignited operating point and the effect of different plasma and confinement assumptions including density and temperature profiles, alpha particle losses, and helium particle confinement time for the different plasma and coil configurations.