The overall vision for FIRE is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing DT fusion plasmas with nominal fusion gains ~10, self-driven currents of [is approximately to]80%, fusion power ~ 150 - 300 MW and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. "Steady-state" advanced tokamak modes in FIRE with high , high bootstrap fraction and 100% non-inductive current drive are suitable for testing the physics of the ARIES-RS/AT operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE H-modes and AT-modes result in fusion power densities from 3 - 10 MWm-3 and neutron wall loading from 2 - 4 MW m-2 which are at the levels expected from the ARIES-RS/AT design studies.