ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
W. Biel, TEXTOR Team
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 246-252
Technical Paper | TEXTOR: Diagnostics | doi.org/10.13182/FST05-A703
Articles are hosted by Taylor and Francis Online.
Spectroscopy in fusion experiments is an important tool to identify impurities in the plasma and to analyze their properties based on the measurement of their characteristic line radiation. For the temperature range typical in fusion plasmas, the dominant part of each impurity in the plasma is highly ionized, and its most intense spectral lines radiate in the vacuum ultraviolet (VUV) wavelength range (10 to 200 nm). The VUV overview spectrometers installed at TEXTOR working at moderate resolution allow one to identify intrinsic plasma impurities such as B (Z = 5), C (Z = 6), Fe (Z = 26), and Cu (Z = 29) as well as seeded impurities such as Ne (Z = 10) and Ar (Z = 18) and to derive information on their relative densities in the plasma. Optimizing these spectrometers for high time resolution provides a tool to analyze transient phenomena like impurity transport processes. In combination with impurity transport modeling and atomic data, the radial distribution of the radial diffusion coefficient is determined from the experimental data. For the case of ohmic discharges, the effective radial diffusion coefficient is found to be anomalously enhanced by more than one order of magnitude as compared to neoclassical predictions.