ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Y. H. Kim, T. Lho, S. M. Yoo, B. J. Lee
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 196-199
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A7012
Articles are hosted by Taylor and Francis Online.
Water, which is treated in an dielectric barrier discharge (DBD) apparatus at atmospheric pressure, has some characteristics similar to ozone water. Since a ceramic electrode is used as the upper electrode and the water electrode is used as the lower electrode in the DBD system, the plasma discharge is directly in contact with the water surface. The air layer located between the two electrodes is subject to a high voltage discharge and various gases, such as ozone, oxides of nitrogen, etc, are produced by the discharge. These discharge produced gases react physically and chemically with the water electrode and change the characteristics of the water. This DBD treated water has strong sterilizing and oxidizing ability. The oxidizing ability, which is measured by the iodometry method, is about 60~80 mg/l and pH value is about 2.8~3, i.e., the DBD treated water is subacid. In addition, this treated water can be used to process fruits, vegetables, and flowers so as to allow them to be stored fresh for a long time. In addition the DBD process can effectively eliminate minerals like Fe and Mn in water.