ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Y. Higashizono et al.
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 185-190
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A7010
Articles are hosted by Taylor and Francis Online.
Based on the results of neutral transport simulation using cylindrical mesh-model, the effect of the plasma edge region was investigated in the GAMMA 10 central-cell. 3-dimensional geometry and neutral sources such as gas puffers, limiters, and neutral beam injection are precisely constructed in the mesh-model of the GAMMA 10 central-cell. From the neutral transport simulation in the case of each neutral source, 1/e decay lengths of H-line intensity (H decay length) along with z-axis were evaluated. It was found that H-line intensity calculated by the simulation of the gas puffer #3(GP#3) in mirror-throat region takes a broader profile than that of central-limiter and gas puffer #7(GP#7) around the central mid-plane region because the plasma density is low in mirror-throat and the neutral particles are given near the vacuum vessel, while the neutral particles in the central-limiter are given near the plasma core. The simulation results also revealed that the H-line intensity drastically decrease in the range with interior components. On the other hand, it was clarified that the H-line intensity in no interior component area takes a little reduction because of a large width in plasma edge region.