ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
S. Brezinsek, A. Huber, S. Jachmich, A. Pospieszczyk, B. Schweer, G. Sergienko
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 209-219
Technical Paper | TEXTOR: Diagnostics | doi.org/10.13182/FST05-A701
Articles are hosted by Taylor and Francis Online.
The exploration of plasma-wall-interaction physics is one of the major tasks of the tokamak TEXTOR. A characterization of the high-temperature plasma edge is essential to interpret the interaction processes of the different charged and uncharged particles in the boundary layer. In the design of the TEXTOR, much effort was made to optimize diagnostic access to the plasma edge for the best possible characterization. The major part of the plasma edge diagnostics presented here is based on passive and active spectroscopy, in addition to different types of electrical probes. Thereby, pioneering work has been achieved in both fields.In passive emission spectroscopy, the work concentrated on the determination of particle fluxes of different types of atomic (W, Si, C, . . .) and molecular (D2, CD, C2, . . .) species from the corresponding photon fluxes at different locations and on the visualization of the local impurity sources by means of two-dimensional imaging. The active spectroscopy with atomic beams was focused on the determination of plasma edge parameters (ne, Te, Ti, . . .) with good spatial and temporal resolution. Therefore, different techniques like thermal Li and He beams, suprathermal Li beams - realized by laser blow-off techniques - and hydrogen neutral beam injectors have been employed. Furthermore, laser-induced fluorescence measurements in the ultraviolet and in the vacuum ultraviolet ranges, which were for the first time performed in a fusion plasma, are presented. The continuous improvement of the different plasma edge diagnostics over more than a decade of TEXTOR plasma operation with different types of first-wall materials is discussed.