ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Y. U. Nam
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 180-184
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A7009
Articles are hosted by Taylor and Francis Online.
A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR). An electron density of plasma is measured on double-path horizontal line with triangular geometry. A cassette system contains two vacuum windows was installed on median port for these purpose. Maximum line-integrated electron density of first plasma is set to 1019 m-2 in this geometry. Since a line density of single-fringe in 280 GHz is 2 × 1018 m-2, a multi-fringe counting circuit has been adopted for a fringe-jump compensation. Measured IF signals are divided into 4 channels which has fringe counting capability of 1, 2, 4 and 8 fringes, respectively. A phase difference between IF signals is converted to DC voltage in each channel according to its fringe coverage. A fringe-jump analysis algorism has been developed for a discrimination of real fringe-jump from noise signal. An electron density of the KSTAR first plasma has been measured and analyzed using this system. Upon these results, an advanced fringe counting scheme will be proposed in this paper.