ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Hyun Seok Kim, Hyunsun Han, Ki Min Kim, Jwa-Soon Kim, Sang Hee Hong
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 95-99
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6990
Articles are hosted by Taylor and Francis Online.
A two-dimensional numerical modeling is carried out to simulate argon plasma-neutral transport in a linear divertor simulator with an axisymmetric cylindrical geometry. A pure argon plasma flow is introduced from the source region into the transport region, and pumped out near the target plate. This numerical modeling is based on a time-dependent Braginskii's fluid formulation for plasma transport and a simple diffusion model for neutral transport. The Bohm diffusion model is adopted for calculation of radial diffusion coefficients across the parallel magnetic field in the simulator. Using the design and operation parameters of the Multi-Purpose Plasma (MP2) facility at the National Fusion Research Institute (NFRI) in Korea, argon plasma properties such as density and temperature distributions are calculated, and the formation of ionization front is found in the transport region. Plasma equilibrium profiles along the near axis turn out to be actually unaffected by the pumping positions along the cylindrical wall. Moreover, a gas target divertor concept is numerically simulated to find out puffing effects as well as pumping roles. As increasing the puffing rate at the target plate, not only the ionization front in the plasma density profile is gradually moving toward the entrance region, but also plasma density and electron temperature at the target are dramatically reduced. Two relatively peaked poles in the neutral density profile are resulted from puffing and recycling neutrals, respectively.