ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
D. Reiter, M. Baelmans, P. Börner
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 172-186
Technical Paper | TEXTOR: Plasma-Wall Interactions | doi.org/10.13182/FST47-172
Articles are hosted by Taylor and Francis Online.
The EIRENE neutral gas transport Monte Carlo code has been developed initially for TEXTOR since the early 1980s. It is currently applied worldwide in most fusion laboratories for a large variety of different purposes. The main goal of code development was to provide a tool to investigate neutral gas transport in magnetically confined plasmas. But, due to its flexibility, it also can be used to solve more general linear kinetic transport equations by applying a stochastic rather than a numerical or analytical method of solution. Major applications of EIRENE are in connection with plasma fluid codes, in particular with the various versions of the B2 two-dimensional plasma edge fluid code. The combined code package B2-EIRENE was developed, again initially for TEXTOR applications, in the late 1980s. It too has become a standard tool in plasma edge science. It is currently mainly used for divertor configurations, such as by the ITER central team, to assist the design of the ITER divertor. Both the EIRENE and B2-EIRENE concepts are introduced and illustrated with sample applications.