ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
Y. Yasaka et al.
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 1-8
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6974
Articles are hosted by Taylor and Francis Online.
A direct energy converter (DEC) designed for thermal ions escaping from a fusion reactor consists of a cusp magnetic field and one-or two-stage decelerating electrodes. In this CUSPDEC, magnetized electrons are deflected along the field lines of the cusp magnetic field to the line cusp region and collected by an electron collector, while weakly magnetized ions can traverse the separatrix and enter into the point cusp region. Thus, ions are separated from electrons, and flow into an ion collector to produce DC power. A normal cusp magnetic field enables us to separate electrons and ions for low energy electrons from a test plasma source, but not for electrons with much higher energies from the tandem mirror GAMMA10. The reason for this is found that the high energy electrons do not follow the field lines due to a high potential applied to the ion collector for ion deceleration. Use of a slanted cusp field has resolved the difficulty resulting in good separation. The efficiency of energy conversion of separated ions with wide spread in energy is ~55 % for a one-stage decelerating electrode. An additional lateral electrode, together with the existing collector, constitutes a two-stage ion collector that provides distributed ion-decelerating fields. The system has revealed improvement in efficiency. From the measured voltage-current characteristics, the efficiency of this two-stage collector is estimated to have a value of 65-70 % at an optimum condition.