ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Y. Yasaka et al.
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 1-8
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6974
Articles are hosted by Taylor and Francis Online.
A direct energy converter (DEC) designed for thermal ions escaping from a fusion reactor consists of a cusp magnetic field and one-or two-stage decelerating electrodes. In this CUSPDEC, magnetized electrons are deflected along the field lines of the cusp magnetic field to the line cusp region and collected by an electron collector, while weakly magnetized ions can traverse the separatrix and enter into the point cusp region. Thus, ions are separated from electrons, and flow into an ion collector to produce DC power. A normal cusp magnetic field enables us to separate electrons and ions for low energy electrons from a test plasma source, but not for electrons with much higher energies from the tandem mirror GAMMA10. The reason for this is found that the high energy electrons do not follow the field lines due to a high potential applied to the ion collector for ion deceleration. Use of a slanted cusp field has resolved the difficulty resulting in good separation. The efficiency of energy conversion of separated ions with wide spread in energy is ~55 % for a one-stage decelerating electrode. An additional lateral electrode, together with the existing collector, constitutes a two-stage ion collector that provides distributed ion-decelerating fields. The system has revealed improvement in efficiency. From the measured voltage-current characteristics, the efficiency of this two-stage collector is estimated to have a value of 65-70 % at an optimum condition.