ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Ph. Mertens, S. Brezinsek
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 161-171
Technical Paper | TEXTOR: Plasma-Wall Interactions | doi.org/10.13182/FST05-A697
Articles are hosted by Taylor and Francis Online.
The detailed physical mechanisms of hydrogen recycling are not yet completely clear. But, their understanding is required for the correct interpretation of spectroscopic measurements that are intended to provide us routinely with the total particle fluxes as well as with sound extrapolations to fusion devices of the next generation. Thanks to its large observation ports, TEXTOR provides ideal conditions for the combination of optical diagnostics based on completely different techniques, which can be applied simultaneously, with high resolving powers (/ = 2 × 104 to 2 × 105).It is shown how Zeeman spectroscopy on the Balmer-alpha transition (656.1 nm) and laser-induced fluorescence at Lyman-alpha (121.5 nm) both point to the presence of a substantial amount of cold hydrogen atoms (with kinetic energy <1 eV) in front of plasma-facing components, which is a phenomenon that, surprisingly, is largely independent of the local plasma parameters. This has led to a strong development of the spectroscopy of hydrogen molecules (Fulcher band), which may be a dominant source of atomic hydrogen in the plasma edge, and, as a final result, to an explanation for the phenomenological correction applied to the inverse photon efficiencies S/XB that are commonly used in the conversion of the photon fluxes into particle fluxes.