ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Matthew J. Bono, George Q. Langstaff, Octavio Cervantes, Craig M. Akaba, Steven R. Strodtbeck, Alex V. Hamza, Nick E. Teslich, Ronald J. Foreman, Johann P. Lotscher, Gregory W. Nyce, Ralph H. Page, Thomas R. Dittrich, Gail Glendinning
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 318-324
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3450
Articles are hosted by Taylor and Francis Online.
Targets were fabricated at Lawrence Livermore National Laboratory and were shot on the Omega laser to study the equation of state of nanoporous copper. The targets had a planar configuration and consisted of a 25-m-thick beryllium ablator, a 70-m-thick brominated-polystyrene preheat shield, and a 38-m-thick aluminum baseplate. A quartz window and a 30-m-thick nanoporous copper sample were bonded to the baseplate. The interface between the nanoporous copper and the aluminum baseplate was required to be as thin as possible so that it would not disturb the shock as it passed through the target. A process for bonding the nanoporous copper was developed that did not compact it or otherwise degrade its structure. An acceptable bond was achieved by sputtering a layer of indium-based solder onto the surface of the nanoporous copper and on the aluminum baseplate. The components were assembled and heated to melt the solder. The resulting solder interface had a thickness of ~1.5 m. The targets performed as expected in the experiments, and the interface between the nanoporous copper and the baseplate did not appear to significantly affect the shock as it passed through the target.