ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
B. J. Haid, T. N. Malsbury, C. R. Gibson, C. T. Warren
Fusion Science and Technology | Volume 55 | Number 3 | April 2009 | Pages 276-282
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST08-3451
Articles are hosted by Taylor and Francis Online.
A single quartz crystal microbalance (QCM) is cooled to 18 K to measure condensation rates inside of a retractable shroud enclosure. The shroud is designed to minimize condensate on fusion targets to be fielded at the National Ignition Facility (NIF). The shroud has a double-walled construction with an inner wall that may be cooled to 75 to 100 K.The QCM and the shroud system were mounted in a vacuum chamber and cooled using a cryocooler. Condensation rates were measured at various vacuum levels and compositions and with the shroud open or closed. A technique for measuring total condensate during the cooldown of the system with an accuracy of >1 × 10-6 g/cm2 was also demonstrated. The technique involves a separate measurement of the condensate-free crystal frequency as a function of temperature that is compared to the measurement for the cooldown trend of interest. The shroud significantly reduces the condensation rates of all gases and effectively eliminates H2O condensation.