ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
B. Schweer, S. Brezinsek, H. G. Esser, A. Huber, Ph. Mertens, S. Musso, V. Philipps, A. Pospieszczyk, U. Samm, G. Sergienko, P. Wienhold
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 138-145
Technical Paper | TEXTOR: Plasma-Wall Interactions | doi.org/10.13182/FST05-A695
Articles are hosted by Taylor and Francis Online.
Limiter lock systems on the top and the bottom of the TEXTOR vessel are essential elements for experimental investigations of plasma-wall interaction in a tokamak. The lock systems are designed as user facilities that allow the insertion of wall elements (limiter) and tools for diagnostic (electrical probes, gas injection) without breaking the TEXTOR vacuum. The specially designed holder on top of the central carrier and a powerful vacuum pump system permit the exchange of components within ~1 h. Up to ten electrical signals, four thermocouples, and a gas supply can be connected at the holder interface. Between discharges, the inserted component can be positioned radially and turned with respect to the toroidal magnetic field. Additionally, the central carrier is electrically isolated to apply bias voltages and currents up to 1 kV and 1 kA, respectively.An important feature of the lock system is the good access for optical spectroscopic observation of the inserted components in the vicinity of the edge plasma. The whole spectrum from ultraviolet to infrared is covered by spectrometers and filters combined with cameras. Toroidally and poloidally resolved measurements are obtained from the view on top of the probes while the tangential poloidal view delivers radially and toroidally resolved information.A programmable logic controller (Simatic S5) that is operated inside the TEXTOR bunker and from remote locations outside the concrete wall drives all possible features of the lock system.